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Motivation: The effect of X on Y

x and y are RV’s. We are interested in quantifying ‘the effect on y
of altering x a little’

What do we mean by ‘altering x’? Moving its location. WLOG,
consider

x = µx + x∗

where µx is a constant and x∗ is a zero mean RV. We are
interested in movements that arise from altering µx marginally
(location shifts).
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The regression way

Consider the regression model

E(y|x) = xβ = µxβ + xβ

so

β =
∂E(y|x)

∂µx

by the Law of Iterated Expectations

E(y) = E[E(y|x)] = E(xβ) = E(x)β = µxβ

so

β =
∂E(y)

∂µx

Through the LIE, β is playing the double role of capturing the
effect of moving x on both, E(y) and E(y|x).
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The quantile regression way

Consider the quantile regression model

Qy|x(τ) = x′β

so
Qy|x(τ)

∂µx
= β

Now we are in trouble since we cannot use something like the LIE
for quantiles.

We can measure how X alters conditional quantiles. What if we
are interested in (unconditional) quantiles?
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The goal is to explore an estimable strategy to compute the
effect of altering X on any feature of Y : mean, variance,
quantiles, Gini coefficients.

Reference: Firpo, Fortin and Lemieux (2009), Unconditional
Quantile Regressions, Econometrica 77, 953-973.

General approach based on influence functions.
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Features as functionals

Let Y be a RV with CDF F (y) and density f(y). Consider its
mean, µ. Then

µ =

∫
yf(y) dy =

∫
y dF (y)

Then µ can be seen as

µ = T (F ) : Dom(F )→ < :

∫
y dF (y)

that is, µ is a ‘function’ of the CDF F . ‘Functions of functions’ are
labeled as functionals.
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In general, features of interest of a random variable can be
expressed as functionals of their CDF’s. Examples

Variance: V (Y ) =
∫

(y −mu)2 dF (y)

Poverty rate: PR(Y ) =
∫ yl
0 y dF (y), where yl is a poverty

line.

Quantiles: Qτ (Y ) = F−1(τ), for invertible CDF.
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It will be convenient to focus on linear functionals of the form

T (F ) =

∫
ψ(y) dF (y)

for some function ψ(y).

Example: Mean

T (F ) =

∫
y dF (y), ψ(y) = y

Example: Poverty rate

T (F ) =

∫
1[y < yl] dF (y), ψ(y) = 1[y < yl]
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Influence function

The influence function of T at F is given by

IF (y;F ) ≡ ψ −
∫
ψ(y) dF (y)

Note that, rather trivially

E[IF (y;F )] = E[IF (y;F )] = 0
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Examples

Mean: µ = T (F ) =
∫
x dF (y), ψ(y) = y

IF (y;F ) = y −
∫
y dF (y) = y − µ

Poverty:
PR(Y ) = T (F ) =

∫
1[y < yl] dF (y), ψ(y) = 1[y < yl]

IF (y;F ) = 1[y < yl]− PR(Y )

We are still keeping some mistery about what is the interpretation of IF...
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Influence and biases

Let T (F ) be a functional, as before.

Q: How does θ = T (F ) change when observations come from
some other distribution G, ‘close’ to F?

The problem is to compute T (G)− T (F ) for G close to F

For asymptotically linear functionals, the following ‘von Mises’
expansion holds

T (G)− T (F ) = T ∗(G− F ) + o(d(G,F ))

where d(G,F ) is a distance between G and F , and T∗ is a linear
functional, so that T ∗(G− T ) = T ∗(G)− T ∗(F ).
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Then, for asymptotically linear functionals and when G is close to
F :

T (G)− T (F ) = T ∗(G− F )

=

∫
ψ d(G− F )

=

∫
ψ dG−

∫
ψ dF

Now, from the definition of the IF, ψ = IF −
∫
ψ dF . Replacing

T (G)− T (F ) =

∫ [
IF −

∫
ψ dF

]
dG−

∫
ψ dF

=

∫
IF dG−

∫
ψ dF

∫
dG−

∫
ψ dF

=

∫
IF dG
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More, formally, what we have shown is the following.
Let F and G we two CDF’s, and define

Ft ≡ (1− t)F + tG = t(G− F ) + F, 0 ≤ t ≤ 1

Then

∂T (Ft)

∂t

∣∣∣∣
t=0

= lim
t↓0

T (Ft)− T (F )

t
=

∫
IF dG

This gives us a first interpretation for the IF...
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Detour: Influence and derivative

Let G = Fε,z, with

Fε,z ≡ (1− ε)F + ε ∆(z) = F + ε (∆(z) − F ), 0 ≤ ε ≤ 1,

and ∆(z) is a degenerate CDF with unit mass at point z.

Using our previous results

T (Fε,z)− T (F ) =

∫
IF (y) dFε,z + o(d(Fε,z, F ))

Now

T (Fε,z)− T (F ) =

∫
IF (y) dFε,z

= (1− ε)
∫
IF (z) dF + ε

∫
IF (y) d∆(z)

= ε

∫
IF (y) d∆(z)

= ε IF (z)
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Replacing

T (Fε,z)− T (F ) = ε IF (z) + o(d(Fε,z, F ))

so

IF (z) = lim
ε↓0

T (Fε,z)− T (F )

ε

IF (z) measures the effect a single point has on a functional.
Recall that for the mean IF (z) = z − µ.

Influence functions have played a fundamental rol in the
development of robust statistics.
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Let us stop for a while.

Recall that our goal is to measure how changes in X affect T ,
a functional of Y .

We are half way. Influence functions give us a way to explore
how changes in F affect T .

The plan: changes in the distribution of X affect the
distribution of Y , and this make T change.

Idea: try to come up with something so we can use the LIE.
The tool is the recentered influence function (RIF).
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Recentered Influence Functions (RIF)

Now call FY the CDF of Y

RIF (y;FY ) = T (FY ) + IF (y, FY )

so, for a linear functional, RIF (y;FY ) = ψ(y).

Two results

1 E(RIF ) = T (FY )

2 Let X be a RV. Using the LIE

T (FY ) =

∫
RIF (y, FY ) dFY

=

∫ [∫
RIF (y, FY ) dFY |X(y|X = x)

]
dFX(x)

=

∫
E[RIF (y, FY ) | X = x] dFX(x)
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These two results are very important

1 T (FY ) = E(RIF ): any magnitude of interest can be seen as
an expectation.

2 T (F ) = E[E(RIF |X)]: we have introduced X through the
LIE.

The plan

1 How small changes in X affect E(RIF ).

2 How small location changes in X affect E(RIF ).

3 The case of quantiles.

4 An estimable form.
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The marginal effects of altering X

Suppose FX changes marginally in the direction of GX . Assume
FY |X stays constant.

Then

∂T (FY,tG∗Y )

∂t

∣∣∣∣
t=0

=

∫
E[RIF (y, FY ) | X = x] d(GX − FX)(x)

where FY,tG∗Y ≡ (1− t)FY + t G∗Y .

Note FY = FY |XFX , so G∗Y = FY |XGX .
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Intuition

Recall FY = FY |XFX

We are changing FX by GX .

G∗Y = FY |XGX would be the new CDF for Y , if we alter FX
but keep FY |X constant.

So, we are trying to measure how altering FX towards GX
affects T .

The whole point is that T depends on Y : X alters Y , and
this alters T .
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Proof

∂T (FY,tG∗
Y

)

∂t
=

∫
IF dG∗Y

=

∫
IF d(G∗Y − FY )

=

∫ (
RIF − T (.)

)
d(G∗Y − FY )

=

∫
RIF d(G∗Y − FY )−

∫
T (.) dG∗Y −

∫
T (.) dFY

=

∫
RIF d(G∗Y − FY )

=

∫ [∫
RIF dFY |X

]
dGX −

∫ [∫
RIF dFY |X

]
dGF

=

∫
E [RIF | X = x] d(GX − FX)
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The unconditional partial effect

Let α(T ) be the vector of partial effects on T of moving each
coordinate of X separately as a location shift. Then (under some
regularity)

α(T ) =

∫
d E [RIF | X = x]

dx
dFX(x)

Proof: cumbersome but easy. Some intuition. Take the case of X a scalar. Under the location shift
GX (x) = FX (x−∆). then∫

E [RIF | X = x] d(GX − FX ) =

∫
E [RIF | X = x] d(FX (x−∆)− FX )

then take derivatives.
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Unconditional Quantile Regression

Let qτ be the τ−th quantile of Y (unconditional). It can be shown
that its influence function is given by

IF (y;F ) =
τ − 1[y ≤ qτ ]

fY (qτ )

so

RIF (y;F ) = qτ +
τ − 1[y ≤ qτ ]

fY (qτ )
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Note: 1[y ≤ qτ ] = 1− 1[y > qτ ], so

RIF (y;F ) = qτ +
τ − 1

f

1

f
1[y > qτ ]

= c2,τ + c1,τ 1[y > qτ ]

Taking expectations

E[RIF (y;F ) | X = x] = c2,τ + c1,τ Pr[y > qτ | X = x]

Then, by our previous result, the UPE is

α(τ) = c1,τ

∫
dPr[y > qτ | X = x]

dx
dFx(x)
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UPE for the LPM

Consider the linear probability model (LPM):

Pr[y > qτ | X = x] = x′β

so
dPr[y > qτ | X = x]

dx
= β

Replacing above
α(τ) = c1,τβ
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Estimation: RIF-OLS

Start with
1[y > qτ ] = x′β + u

so under the LPM assumption E(u|x) = 0. Now

RIF (y;F ) = 1[y > qτ ]c1,τ + c2,τ = c2,τ + c1,τ x
′β + u

= c2,τ + x′β∗ + u

with β∗ ≡ c1,τβ = α(τ)
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So, for the τ−th quantile we have

RIF (y;F ) = c2,τ + x′β∗ + u

this is the RIF regression for the τ−th quantile.

If RIF (y;F ) were observable, we could regress it on x, to
obtain an estimate for β∗.

Recalling that

RIF (y;F ) = qτ +
τ − 1[y ≤ qτ ]

fY (qτ )

qτ and fY (qτ ) are first estimated and then the estimated RIF
is regressed on X.
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qτ is estimated as the sample τ−th quantile.

fY (qτ ) is usually estimated non-parametrically (using a kernel
density estimator).

Then, for each observation we compute

R̂IF (yi;F ) = q̂τ +
τ − 1[yi ≤ qτ ]

f̂Y (qτ )

Regress R̂IF (yi;F ) on xi
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